Exercise 31

Find an equation of the tangent line to the given curve at the specified point.

$$
\begin{equation*}
y=\frac{x^{2}-1}{x^{2}+x+1} \tag{1,0}
\end{equation*}
$$

Solution

Start by finding the slope of y at $x=1$. Evaluate the derivative using the quotient rule.

$$
\begin{aligned}
y^{\prime} & =\frac{d}{d x}\left(\frac{x^{2}-1}{x^{2}+x+1}\right) \\
& =\frac{\left[\frac{d}{d x}\left(x^{2}-1\right)\right]\left(x^{2}+x+1\right)-\left[\frac{d}{d x}\left(x^{2}+x+1\right)\right]\left(x^{2}-1\right)}{\left(x^{2}+x+1\right)^{2}} \\
& =\frac{(2 x)\left(x^{2}+x+1\right)-(2 x+1)\left(x^{2}-1\right)}{\left(x^{2}+x+1\right)^{2}} \\
& =\frac{x^{2}+4 x+1}{\left(x^{2}+x+1\right)^{2}}
\end{aligned}
$$

Evaluate it at $x=1$.

$$
y^{\prime}(1)=\frac{6}{9}=\frac{2}{3}
$$

Therefore, the equation of the line with slope $2 / 3$ that goes through $(1,0)$ is

$$
y-0=\frac{2}{3}(x-1) .
$$

